Get Adobe Flash player


Authors: Sukhodub L.F., Sukhodub L.B.

Pagesи: 143-152


The short overview describes some natural polysaccharide chitosan (CS) applications in practical medicine, in particular tissue engineering. History of chitosan discovery, its synthesis, physicochemical and spectral (IR) data are presented. We described some CS-hydroxyapatite (HA) scaffolds and more complicated systems based on two biopolymers: CS and sodium alginate (ALG), which wereobtained in the Bionanocomposite laboratory of Sumy State University (Sumy, Ukraine). On the one hand, these polymers are the most perspective because they have bacteriostatic properties for a vast number of aerobic and anaerobic bacteria; high biocompatibility towards the connective tissue; low toxicity; an ability to improve regenerative processes during wounds healing; and degradation ability with the creation of chemotaxic activity towards fibroblasts and osteoblasts. On the other hand, formation of nanosized (25–75 nm) calcium deficient hydroxyapatite (cdHA) particles in the polymer scaffold approaches the derived material to the biogenic bone tissue, which can provide its more effective implantation. Also, an accent was made on antibacterial CS properties, including the complexes with metal ions, biopolymer systems for control drug delivery with a prolong action. Modern direction in chitosan studies – electroformation of chitosan fiber (“Nanospider” technology) is also discussed.

Key words: chitosan, tissue engineering, scaffolds, hydroxyapatite, nanocomposites, coatings.

This email address is being protected from spambots. You need JavaScript enabled to view it.

This email address is being protected from spambots. You need JavaScript enabled to view it.">

The full text

In progress


1. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan – a versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science. 2011;36(8):981–1014.
2. Martino AD, Sitting V, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–5990.
3. Mao JS, Cui YL, Wang XH, Sun Y, Yin YJ, Zhao HM, De Yao K. A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials. 2004;25(18):3973–3981.
4. Nikitenko P, Khrustitskaya L. [Chitosan – a polymer of the future] The Science and Innovations. 2013;127(9):14–17.
5. Seol YJ, Lee JY, Park YJ, Lee YM, Young K, Rhyu IC, Lee SJ, Han SB, Chung CP. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnology Letters. 2004;26(13):1037–1041.
6. Seeherman H, Li R, Wozney J. A review of preclinical program development for evaluating injectable carriers for osteogenic factors. The Journal of Bone and Joint Surgery. American Volume. 2003;85-A(3):96–108. 
7. Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. Journal of Biomedical Materials Research. 2001;55(3):304–312.
8. Zhang Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. Journal of Biomedical Materials Research. 2002;62(3):378–386.
9. Lian Q, Li D, Jin Z, Wang J, Li A, Wang Z, Jin Z. Fabrication and in vitro evaluation of calcium phosphate combined with chitosan fibers for scaffold structures. Journal of Bioactive and Compatible Polymers. 2009;24(1):113–124.
10. Sukhodub LF, Yanovska GO, Sukhodub LB, Kuznetsov VM, Stanislavov OS. Nanocomposite apatite-biopolymer materials and coatings for biomedical applications. Journal of Nano- and Electronic Physics. 2014;6(1):id01001.
11. Zhang Y, Zhang M. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. Journal of Biomedical Materials Research. 2002;61(1):1–8.
12. Zhang Y, Ni M, Zhang M, Ratner B. Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Tissue Engineering. 2003;9(2):337–345.
13. Han J, Zhou Z, Yin R, Yang D, Nie J. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. International Journal of Biological Macromolecules. 2010;46(2):199–205.
14. Boddohi S, Moore N, Johnson PA, Kipper MJ. Polysaccharide-basedpolyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules. 2009;10(6):1402–1409.
15. Ilina AV, Varlamov VP. Chitosan-based polyelectrolyte complexes: a review. Applied Biochemistry and Microbiology. 2005;41(1):10–16.
16. Denuziere A, Ferrier D, Damour O, Domard A. Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: biological properties. Biomaterials. 1998;19(14):1275–1285.
17. Yin YJ, Yao KD, Cheng GX, Ma JB. Properties of polyelectrolyte complex films of chitosan and gelatin. Polymer International. 1999;48(6):429–432.
18. Mao JS, Cui YL, Wang XH, Sun Y, Yin YJ, Zhao HM, De Yao K. A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials. 2004;25(18):3973–3981.
19. Jiang T, Zhang Z, Zhou Y, Liu Y, Wang Z, Tong H, Shen X, Wang Y. Surface functionalization of titanium with chitosan/gelatin via electrophoretic deposition: characterization and cell behavior. Biomacromolecules. 2010;11(5):1254–1260.
20. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews. 2009;62(1):83–99.
21. Tsuchida E, Abe K. Interactions between macromolecules in solution and intermacromolecular complexes. Advances of Polymer Science. 1982;45:1–119.
22. Chung YC, Chen CY. Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technology. 2008;99(8):2806–2814.
23. Je JY, Kim SK. Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. Journal of Agricultural and. Food Chemistry. 2006;54(18):6629–6633.
24. Liu H, Du Y, Wang X, Sun L. Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology. 2004;95(2):147–155.
25. Moussa SH, Tayel AA, Al-Turki AI. Evaluation of fungal chitosan as a biocontrol and antibacterial agent using fluorescence-labeling. International Journal of Biological Macromolecules. 2013;54:204–208.
26. Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, Lin JG. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacologica Sinica. 2004;25(7):932–936.
27. Guibal E. Interactions of metal ions with chitosan-based sorbents: a review. J. Sep. Purif. Technol. 2004;38(1):43–74.
28. Thomas V, Yallapu M, Mohan SB, Bajpai SK. Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. Journal of Biomaterials Science. Polymer Edition. 2009;20(14):2129–2144.
29. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances. 2009;27(1):76–83.
30. Yanovska AA, Stanislavov AS, Sukhodub LB, Kuznetsov VN, Illiashenko VYu, Danilchenko SN, Sukhodub LF. Silver-doped hydroxyapatite coatings formed on Ti-6Al-4V substrates and their characterization. Materials Science and Engineering. C, Materials for Biological Applications. 2014;36:215–220. 
31. Miyazaki S, Ishii K, Nadai T. The use of chitin and chitosan as drug carriers. Chemical and Pharmacological Bulletin. 1981;29(10):3067–3069.
32. Genta I, Pavanetto F, Conti B, Giunchedi P, Conte U. Spray drying for the preparation of chitosan microspheres. Proc. Int. Symp. Control Release Bioact. Mater. 1994;21:616–617.
33. Sawayanagi Y, Nambu N, Nagai T. Dissolution properties and bioavailability of phenytoin from ground mixtures with chitin or chitosan. Chemical and Pharmacological Bulletin. 1983;31(6):2064–2068.
34. Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharmaceutical Research. 1994;11(8):1186–1189.
35. Luessen HL, Lehr CM, Rentel CO, Noach ABJ, de Boer AG, Verhoef JC, Junginger HE. Bioadhesive polymers for the peroral delivery of peptide drugs. Journal of Controlled Release. 1994;29(3):329–338.
36. Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharmaceutical Research. 1994;11(9):1358–1361.
37. Dubnika A, Loca D, Berzina-Cimdina L. Functionalized hydroxyapatite scaffolds coated with sodium alginate and chitosan for controlled drug delivery. Proceedings of the Estonian Academy of Sciences. 2012;61(3):193–199. doi: 10.3176/proc.2012.3.08
38. Li Z., Ramay HR. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26(18):3919–3928.
39. Du WL, Niu SS, Xu YL, Xu ZR, Fan CL. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers. 2009;75(3):385–389.
40. Muliarchik V, Danishevskii V, Melamed V. [Chitosan nanofibers: preparation, properties and application]. The Science and Innovations. 2013;127(9):18–20.