Get Adobe Flash player

THE 3D-MODEL OF RAT’S HUMERI TESTING TOUGHNESS PROPERTIES FOR VARIOUS DEFORMATION

Аuthors: Bushtruk A. N., Tkach G. F., Pogorielov M. V., Sikora V. Z.

Pages: 398-407

Аbstract

   

           The article is devoted to study toughness of rat’s humeri testing them for stiffness, strength and stretching. Our aim is to create a 3D-model of the long bone for rats of different age. This model will allow conducting numerous toughness tests by changing the initial parameters. The portable experimental unit was used to test humeri stretching, with the measuring scale accurate to 0.25 kg. Evaluation of toughness was carried by Pro/Engineer software package (PTC, USA) and included Pro/Mechanica modulus. The minimal value of critical toughness was measured in the bones of sucking rats. Value of stretching showed almostdirectly proportional dependence between critical bone toughness and rats age. Having compared experimental data and calculations of crack load values, we pointed that value deviation is less than 7%. The 3-D image of the long bone for rats of different age can be frequently used for various deformation influences and with different initial parameters of the bone tissue.

      Key words: toughness, humerus, deformation, 3D-model.

      This email address is being protected from spambots. You need JavaScript enabled to view it.">*This email address is being protected from spambots. You need JavaScript enabled to view it.

  

The full text

To viev the full text

References

1. Currey J. D. Bones / J. D. Currey // Princeton: Princeton University Press. – 2002.
2. Turner C. H., Burr D. B. Basic biomechanical measurements of bone: a tutorial. / C. H. Turner, D. B. Burr // Bone. – 1993. – Vol. 14. ¬ P. 595–608.
3. Bone biomechanical properties in prostaglandin EP1 and EP2 knockout mice./ M. P. Akhter, D. M. Cullen, G. Gong [et al.] // Bone. – 2001. – Vol. 29. – P.121–5.
4. Currey J. D. Mechanical properties of bone tissues with greatly differing functions. / J. D. Currey // J Biomech. – 1979. – Vol. 12. – P. 313–9.
5. Behiri J. C., Bonfield W. Orientation dependence of the fracture mechanics of cortical bone. / J. C. Behiri, W. Bonfield // J Biomech. – 1989. – Vol. 22. – P. 863–7.
6. Vashishth D. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. / D. Vashishth // J Biomech. – 2004. – Vol. 37. – P. 943–6.
7. Mechanistic aspects of fracture and Rcurve behavior in human cortical bone./ R. K. Nalla, J. J. Kruzic, J. H. Kinney [et al.] // Biomaterials. – 2005. – Vol. 26. – P. 217–31.
8. Taylor D., Hazenberg J. G., Lee T. C. Living with cracks: damage and repair in human bone. / D. Taylor, J. G. Hazenberg, T. C. Lee // Nature Mater. – 2007. – Vol. 6. – P. 249–317.
9. The effect of calcium supplementation on bone density during lactation and after weaning. / H. J. Kalkwarf, B. L. Specker, D. C. Bianchi [et al.] // New Engl J Med. – 1997. – Vol. 337. – P. 523–8.
10. Zioupos P., Currey J. D. Changes in the stiffness, strength, and toughness of human cortical bone with age. / P. Zioupos, J. D. Currey // Bone. – 1998. – Vol. 22. –P. 57–66.
11. Alendronate versus calcitriol for the prevention of bone loss after cardiac transplantation. / E. Shane, V. Addesso, P. Namerow [et al.] // New Engl J Med. – 2004. – Vol. 350. – P. 767–76.
12. Roodman G. D. Mechanisms of bonemetastasis. / G. D. Roodman // New Engl J Med. – 2004. – Vol. 350. – P. 1655–64.
13. Glucocorticoidtreated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogendeficient mice. / N. E. Lane, W. Yao, M. Balooch [et al.] // J Bone Miner Res. – 2006. – Vol. 21. – P. 466–76.
14. Bone biomechanical properties in lrp5 mutant mice./ M. P. Akhter, D. J. Wells, S. J. Short [et al.] // Bone. – 2004. – Vol. 35. – P. 162–9.
15. Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse samp6. / M. J. Silva, M. D. Brodt, Z. Fan [et al.] // J Biomech. – 2004. – Vol. 37. – P. 1639–46.
16. 3D bone microarchitecture modeling and fracture risk prediction / H. Li, X. Li, L. Bone [et al.]// Conference on Bioinformatics, Computational Biology and Biomedicine, BCB. – 2012. – P. 361-368
17. Cristofolini L., Viceconti M. Mechanical validation of whole bone composite tibia models / L. Cristofolini, M. Viceconti // Journal of Biomechanics. – Vol. 33 (3). – P. 279-288.
18. Modelling the fibrous tissue layer in cemented hip replacements: Experimental and finite element methods / V. Waide, L. Cristofolini, J. Stolk [et al.] / Journal of Biomechanics. – 2004. – Vol. 37 (1). – P. 13-26.
19. Experimental validation of a finite element model of a human cadaveric tibia / H. A. Gray, F. Taddei, A. B. Zavatsky [et al.] //Journal of Biomechanical Engineering. – 2008. – Vol. 130 (3).
20. Computationally-optimized bone mechanical modeling from high-resolution structural images / J. F. Magland, N. Zhang, C. S. Rajapakse, [et al.]. – PloS one. – 2012. – Vol. 7 (4). – P. 35–25.
21. Harrison N. M. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach / N. M. Harrison, P. McDonnell, L. Mullins // Biomechanics and Modeling in Mechanobiology. – 2012. – P. 1-17.
22. Chennimalai Kumar N. Modeling of cortical bone adaptation in a rat ulna: Effect of frequency (2012) / N. Chennimalai Kumar, J. A. Dantzig, I. M. Jasiuk // Bone. – Vol. 50 (3). – P. 792–797.
23. Finite element modelling of squirrel, guinea pig and rat skulls: Using geometric morphometrics to assess sensitivity (2011) / Cox P.G., Fagan M. J., Rayfield E. J. [et al.] // Journal of Anatomy. – Vol. 219 (6). – P. 696–709.
24. Bernard S. Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy /, Q. Grimal, P. Laugier // Journal of the Mechanical Behavior of Biomedical Materials. – 2013. – Vol. 18. – P. 12–19.
25. A computational method for determining tissue material properties in ovine fracture calluses using electronic speckle pattern interferometry and finite element analysis / M. Steiner, L. Claes, U. Simon [et al.] // Medical Engineering and Physics. – 2012. – Vol. 34 (10). – P. 1521–1525.
26. Sacco S. M. Phytonutrients for bone health during ageing / S. M. Sacco, M.-N. Horcajada, E. Offord // British Journal of Clinical Pharmacology. – 2013. – Vol. 75 (3). – P. 697–707.
27. Inactivation of Lrp5 in osteocytes reduces Young's modulus and responsiveness to the mechanical loading 2013 / L. Zhao, J. W. Shim, T. R. Dodge [et al.] // Bone. – Vol. 54 (1). – P. 35–43.