Get Adobe Flash player

НОВЫЕ ПОДХОДЫ К СОЗДАНИЮ ЛИПОСОМАЛЬНЫХ ВИРУСНЫХ ВАКЦИН

Автор: Давыдова Т. В., Волянский А. Ю.

Страницы: 391-404

Аннотация

         

Липосомальные технологии доставки вакцины в настоящее время переживают свое новое возрождение. Липосомы (везикулы с фосфолипидного бислоя) являются универсальными и надежными системами доставки антигенов для индукции антител и Т лимфоцитов. За последние 15 лет усовершенствована технологии липосомальных вакцин и на сегодняшний день несколько вакцин, содержащих липосомы с адъювантами, были одобрены для использования или достигли последней стадии клинической оценки. Учитывая это, мы предоставили систематический обзор физико-химических факторов, которые следует учитывать при проектировании липосомальных вакцин. Общий анализ литературы убедительно доказывает, что эти факторы (размер, заряд, состав, способ прикрепления антигена) имеют значимые последствия для потенциальной иммуногенности препарата и должны быть тщательно подобраны. Несмотря на определенные тенденции ассоциативной связи биофизических параметров везикул с иммуногенностью, взаимосвязанность различных биофизических факторов определяет необходимость оптимизировать отдельные композиции для конкретных программ вакцинации отдельно для каждой. Хотя большое количество литературных ссылок описывает важность биофизических параметров липосомальных композиций для проявления их специфической иммуногенности, многие важные вопросы остаются без ответа. На клеточном уровне непонятным остается вопрос о том, как липидные вещества влияют на обработку антигена и его презентацию? Мало известно о клеточном распределении липидов модифицированных пептидов.

Необходимы дальнейшие исследования, чтобы выяснить механистическую основу адъювантного действия катионных липидов и липосомальных композиций в целом. Учитывая универсальность липосомальных носителей и их способность к одновременному включению нескольких молекул адъювантов, липосомы, казалось бы, идеальная модельная система для изучения явления синергизма в мельчайших подробностях в пробирке и в естественных условиях.

Ключевые слова: вакцины, липосомы, иммуногенность

Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Список литературы

1. Zanetti A.R. The global impact of vaccination against hepatitis B: a historical overview Zanetti A.R., Van Damme P., Shouval D. // Vaccine. -  2008.- Nov 18.- 26(49)6266–73.

2.  Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24–45 years: a randomised, double-blind trial / Munoz N., Manalastas R. Jr., Pitisuttithum P., Tresukosol D., Monsonego J., Ault K., et al. // Lancet. 2009  Jun 6; 373(9679), 1949–57. 

3. O’Hagan D. Recent advances in the discovery and delivery of vaccine adjuvants / O’Hagan D., Valiante N. // Nature Reviews Drug Discovery. 2003; 2, 727–35.

4.  Vaccine adjuvant systems: Enhancing the efficacy of sub-unit protein antigens / Perrie Y., Mohammed A., Kirby D., McNeil S., Bramwell V. // Int J Pharm.- 2008. - 364.- 272.–80.

5. The antigenic value of toxoid precipitated by potassium-alum Glenny A., Pope C., Waddington H., Wallace V.J. // Pathol Bacteriol. 1926; 29 38–45.

6. Harper D.M. Currently approved prophylactic HPV vaccines. Harper D.M.: Expert Rev Vaccines. 2009  Dec; 8(12), 1663–79.

7.  Allison A.G. Liposomes as immunological adjuvants / Allison A.G., Gregoriadis G. // Nature. 1974.  Nov  15. 252(5480) 252.

8. Gregoriadis G. Entrapment of proteins in liposomes prevents allergic reactions in pre-immunised mice   Gregoriadis G., Allison A.C.// FEBS Lett. 1974. - Sep 1. 45(1) 71–4.

9. Liposomal vaccine delivery systems. Expert Opin Drug Deliv / Henriksen-Lacey M., Korsholm K.S., Andersen P., Perrie Y., Christensen D. // 2011.  Apr 8(4). 505–10.

10.  Liposomes as immunological adjuvants and vaccine carriers Gregoriadis G., Gursel I., Gursel M., McCormack B. // J Control Release. 1996. 41(1–2). 49–56.

11. Alving C. Lipid A and liposomes containing lipid A as antigens and adjuvants / Alving C., Rao M. //  Vaccine. 2008. 26(24) 3036–45.

12.  Eleven years of Inflexal V-a virosomal adjuvanted influenza vaccine / Herzog C., Hartmann K., Kunzi V., Kursteiner O., Mischler R., Lazar H., [et al.] // Vaccine.  2009.  Jul 16;27(33) 4381–7. 

13. Mischler R. Inflexal V a trivalent virosome subunit influenza vaccine: production / Mischler R., Metcalfe I.C. // Vaccine. 2002.  Dec 20. 20( Suppl 5) B17–23.

14. Bovier P.A. Epaxal: a virosomal vaccine to prevent hepatitis A infection / Bovier P.A. // Expert Rev Vaccines. 2008.  Oct.7(8) 1141–50.

15. Antibody titres after primary and booster vaccination of infants and young children with a virosomal hepatitis A vaccine (Epaxal) / Usonis V., Bakasenas V., Valentelis R., Katiliene G., Vidzeniene D., Herzog C. // Vaccine.  2003  Nov 7 21(31) 4588–92

16.  Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer  / Butts C., Murray N., Maksymiuk A., Goss G,. Marshall E., Soulieres D.[et al.] //J Clin Oncol. 2005.  Sep 20. 23(27) 6674–81. 

17. North S. Vaccination with BLP25 liposome vaccine to treat non-small cell lung and prostate cancers / North S., Butts C. // Expert Rev Vaccines. 2005.  Jun;4(3) 249–57.

18. Regules J.A. The RTS,S vaccine candidate for malaria Regules J.A., Cummings J.F., Ockenhouse C.F.// Expert Rev Vaccines. 2011.  May;10(5) 589–99.

19. Evaluation of the safety and immunogenicity of the RTS,S/AS01E malaria candidate vaccine when integrated in the expanded program of immunization / Agnandji S.T,. Asante K.P., Lyimo J., Vekemans J., Soulanoudjingar S.S., Owusu R.[et al.]// J Infect Dis.  2010.- Oct 1 —202(7) 1076–87.

20. Torchilin V.P. Recent advances with liposomes as pharmaceutical carriers / Torchilin V.P.: Nat Rev Drug Discov. 2005.  Feb;4(2) 145–60.

21. Tollemar J. Liposomal amphotericin B (AmBisome) for fungal infections in immunocompromised adults and children / Tollemar J., Klingspor L., Ringden O.// Clin Microbiol Infect.  2001. 7( Suppl 2) 68–79.

22.  Randomized comparative trial of pegylated liposomal doxorubicin versus bleomycin and vincristine in the treatment of AIDS-related Kaposi’s sarcoma / Stewart S., Jablonowski H., Goebel F.D., Arasteh K., Spittle M., Rios A.[et al.]// International Pegylated Liposomal Doxorubicin Study Group. : J of Clinical Oncology. 1998. 16(2). 683–91.

23. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy / Fries L.F.,. Gordon D.M., Richards R.L., Egan J.E., Hollingdale M.R., Gross M.[et al.] //  Proc Natl Acad Sci U S A.  1992 . Jan 1. 89(1) 358–62.

24.  First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children / Agnandji S.T., Lell B., Soulanoudjingar S.S., Fernandes J.F., Abossolo B.P., Conzelmann C.[et al.]// N Engl J Med.  2011.  Nov 17. 365(20). 1863–75.

25. Liposome-based cationic adjuvant formulations (CAF): past, present, and future / Christensen D., Agger E.M., Andreasen L.V., Kirby D., Andersen P., Perrie Y. // J Liposome Res. - -2009. 19(1). 2–11.

26. Cationic liposomes as vaccine adjuvants / Christensen D., Korsholm K.S., Rosenkrands I., Lindenstrom T., Andersen P., Agger E.M. // Expert Rev Vaccines. 2007.  Oct 6(5). 785–96.

27. Chen W.C. Non-viral vector as vaccine carrier /  Chen W.C., Huang L. // Adv Genet.  2005. 54. 315–37.

28. Vangasseri D.P. Lipid-protamine-DNA-mediated antigen delivery / Vangasseri D.P., Han S.J., Huang L.// Curr Drug Deliv.  2005.  Oct.2(4). 401–6.

29. Virosomes for antigen and DNA delivery Daemen T., de Mare A., Bungener L., de Jonge J., Huckriede A., Wilschut J. //  Adv Drug Deliv Rev. 2005.  Jan 10. 57(3). 451–63.

30.  The virosome concept for influenza vaccines / Huckriede A., Bungener L., Stegmann T., Daemen T., Medema J., Palache A.M.[et al.] // Vaccine. 2005.  Jul. 8. 23( Suppl 1). — 26-38.

31. Krishnan L. Archaeosome adjuvants: immunological capabilities and mechanism(s) of action Krishnan L. , Sprott G. D. // Vaccine. 2008.  Apr. 16. 26(17). 2043–55.

32. Azeem A. Niosomes in sustained and targeted drug delivery: some recent advances / Azeem A., Anwer M.K., Talegaonkar S. // J Drug Target. 2009 . -Nov.17(9). 671–89.

33. Vyas S.P. Vesicular carrier constructs for topical immunisation / Vyas S.P., Khatri K., Mishra V. // Expert Opin Drug Deliv. 2007.- Jul.4(4). 341–8.

34. Davis D. Liposomes as adjuvants with immunopurified tetanus toxoid: influence of liposomal characteristics / Davis D., Gregoriadis G. // Immunology. 1987. —Jun.61(2). 229–34.

35. Shahum E. Immunopotentiation of the humoral response by liposomes: encapsulation versus covalent linkage / Shahum E., Therien H.M. // Immunology. 1988.  Oct.65(2). 315–7.

36. Shahum E. Liposomal adjuvanticity: effect of encapsulation and surface-linkage on antibody production and proliferative response / Shahum E., Therien H.M. // Int J Immunopharmacol. 1995 -  Jan.17(1). 9–20.

37. Tan L. Comparison of the immune response against polio peptides covalently-surface-linked to and internally-entrapped in liposomes Tan L., Weissig V., Gregoriadis G. // Asian Pac J Allergy Immunol.  1991. Jun.9(1). 25–30.

38. Therien H.M. Liposomal vaccine: influence of antigen association on the kinetics of the humoral response / Therien H.M., Lair D., Shahum E. // Vaccine. 1990.  Dec.8(6). 558–62.

39. Shahum E. Correlation between in vitro and in vivo behaviour of liposomal antigens/ Shahum E., Therien H.M. // Vaccine. -1994.  Sep.12(12). 1125–31.

40. Vannier W.E. Antibody responses to liposome-associated antigen / Vannier W.E., Snyder S.L.// Immunol Lett. 1988.  Sep.19(1). 59–64

41. Antibody and cytotoxic T-lymphocyte responses to a single liposome-associated peptide antigen / White W.I., Cassatt D.R., Madsen J., Burke S.J., Woods R.M., Wassef N.M.[et al.] // Vaccine. 1995. 13(12). 1111–22.

42. Liposomal formulations of synthetic MUC1 peptides: effects of encapsulation versus surface display of peptides on immune responses/ Guan H.H., Budzynski W., Koganty R.R., Krantz M.J., Reddish M.A., Rogers J.A.[et al.]// Bioconjug Chem. 1998. —Jul-Aug.9(4). 451–8. 

43.  Influence of peptide acylation, liposome incorporation, and synthetic immunomodulators on the immunogenicity of a 1–23 peptide of glycoprotein D of herpes simplex virus: implications for subunit vaccines/ Brynestad K., Babbit B., Huang L., Rouse B.T. // J Virol. 1990.  - Feb.64(2). 680–5.

44. Parameters affecting the immunogenicity of a liposome-associated synthetic hexapeptide antigen / Frisch B., Muller S., Briand J., Van Regenmortel M., Schuber F. Eur J.// Immunol. 1991. 21(1). 185–93.

45.Chen W. Induction of cytotoxic T-lymphocytes and antitumor activity by a liposomal lipopeptide vaccine / Chen W., Huang L. // Mol Pharm. 2008. —May-Jun. 5(3) 464–71. 

46.Liposomal peptide vaccine inducing CD8+ T cells in HLA-A2.1 transgenic mice, which recognise human cells encoding hepatitis C virus (HCV) proteins/ Engler O., Schwendener R., Dai W., Wolk B., Pichler W., Moradpour D.[et al.]// Vaccine. 2004. 23(1). 58–68.

47. Antigen-specific, IgE-selective unresponsiveness induced by antigen-liposome conjugates  Comparison of four different conjugation methods for the coupling of antigen to liposome Nakano Y., Mori M., Nishinohara S., Takita Y., Naito S., Horino A.[et al.]// Int Arch Allergy Immunol. 1999.  Nov.120(3). 199–208

48.Garcon N.M. Universal vaccine carrier. Liposomes that provide T-dependent help to weak antigens / Garcon N.M., Six H.R. // J Immunol.- 1991.- Jun.1.- 146(11) 3697–702. 

49. Liposomes that provide T-dependent help to weak antigens (T-independent antigens)/ Pietrobon P.J., Garcon N., Lee C.H., Six H.R.// Immunomethods. 1994.- Jun .4(3). 236–43. 

50. Design of highly immunogenic liposomal constructs combining structurally independent B cell and T helper cell peptide epitopes/ Boeckler C., Dautel D., Schelte P., Frisch B., Wachsmann D., Klein J.P.[et al.]// Eur J Immunol.  1999.  Jul. 29(7). 2297–308.

51. Synthesis of thiol-reactive lipopeptide adjuvants. Incorporation into liposomes and study of their mitogenic effect on mouse splenocytes/ Roth A., Espuelas S., Thumann C., Frisch B., Schuber F. // Bioconjug Chem. 2004.  May-Jun. —15(3). 541–53.

52. Metallochelating liposomes with associated lipophilised norAbuMDP as biocompatible platform for construction of vaccines with recombinant His-tagged antigens: preparation, structural study and immune response towards rHsp90Masek J., Bartheldyova E., Turanek-Knotigova P., Skrabalova M., Korvasova Z., Plockova J.[etal.]// J Control Release. - 2011.  Apr. 30. —151(2). 193–201.

53. Antibody response in mice to polyhistidine-tagged peptide and protein antigens attached to liposomes via lipid-linked nitrilotriacetic acid / Watson D.S., Platt V.M., Cao L., Venditto V.J., Francis C., Szoka J// Clin Vaccine Immunol.  2011. —18(2). 289–97.

53. Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen/  Henriksen-Lacey M., Bramwell V.W., Christensen D., Agger E.M., Andersen P., Perrie Y.// J Control Release.-2010.  Mar. 3.- 142(2). 180–6.

54. Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), 3beta-[N-(N′,N′-Dimethylaminoethane)carbomyl] cholesterol (DC-Chol), and 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP): prolonged liposome retention mediates stronger Th1 responses/ Henriksen-Lacey M., Christensen D., Bramwell V.W., Lindenstrom T., Agger E.M., Andersen P.[et al]// Mol Pharm. 2011. Feb. 7.-8(1). 153–61.

55. Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI responseHenriksen-Lacey M., Christensen D., Bramwell V.W., Lindenstrom T., Agger E.M., Andersen P.[et al.]// J Control Release. 2010. Jul. 14. —145(2).102–8.

56. CAF01 potentiates immune responses and efficacy of an inactivated influenza vaccine in ferrets / Martel C.J., Agger E.M., Poulsen J.J., Hammer Jensen T., Andresen L., Christensen D. [et al.]// PLoS ONE —2011. —6(8). 22891.

57. Phillips W.T. Novel method of greatly enhanced delivery of liposomes to lymph nodes/ Phillips W.T., Klipper R., Goins B.// J Pharmacol Exp Ther.- 2000.  Oct. —295(1). 309–13

58. Lipophosphoglycan of Leishmania major that vaccinates against cutaneous leishmaniasis contains an alkylglycerophosphoinositol lipid anchor/ McConville M.J., Bacic A., Mitchell G.F., Handman E.//  Proc Natl Acad Sci U S A. 1987.  Dec. —84(24). 8941–5.

59. Shek P. Immune response mediated by liposome-associated protein antigens. III. Immunogenicity of bovine serum albumin covalently coupled to vesicle surface /Shek P., Heath T. // Immunology. —1983. —50(1). 101–6.

60. Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins/ Nakanishi T., Kunisawa J., Hayashi A., Tsutsumi Y., Kubo K., Nakagawa S.[et al]// J Control Release. 1999.  Aug. 27. —61(1–2). 233–40.

61. Yasuda T. Immunogenicity of liposomal model membranes in mice: dependence on phospholipid compositionYasuda T., Dancey G.F., Kinsky S.C. // Proc Natl Acad Sci U S A  1977.  Mar.74(3). 1234–6.

62. Vaccination against murine cutaneous leishmaniasis by using Leishmania major antigen/liposomes. Optimization and assessment of the requirement for intravenous immunizationKahl L.P., Scott C.A., Lelchuk R., Gregoriadis G., Liew F.Y. // J Immunol.  1989. Jun. 15. —142(12) 4441–9.

63. Enhancement of in vivo and in vitro T cell response against measles virus haemagglutinin after its incorporation into liposomes: effect of the phospholipid composition/ Garnier F., Forquet F., Bertolino P., Gerlier D.// Vaccine.  1991. —9. 340–5.

64. Mazumdar T. Influence of phospholipid composition on the adjuvanticity and protective efficacy of liposome-encapsulated Leishmania donovani antigens Mazumdar T., Anam K., Ali N. // J Parasitol. 2005. Apr. 91(2) 269–74.

65. Enhancement of immune response and protection in BALB/c mice immunized with liposomal recombinant major surface glycoprotein of Leishmania (rgp63): the role of bilayer composition/ Badiee A., Jaafari M.R., Khamesipour A., Samiei A., Soroush D., Kheiri M.T.[et al.]// Colloids Surf B Biointerfaces.  2009.  Nov. 1. —74(1) 37–44.

66. Ellens H.  Fusion of phosphatidylethanolamine-containing liposomes and mechanism of the L alpha-HII phase transition / Ellens H., Bentz J., Szoka F.C. // Biochemistry (Mosc).-1986. Jul. 15. —25(14). 4141–7.

67. Legendre J.Y. Jr Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res/ Legendre J.Y. , Szoka F.C. // 1992. - Oct.9(10). 1235–42. 

68.  Li W. Jr Lipid-based nanoparticles for nucleic acid delivery/ Li W., Szoka F.C. //  Pharm Res.  2007.  Mar.24(3). 438–49

70. Role of fusogenic non-PC liposomes in elicitation of protective immune response against experimental murine salmonellosis/ Ahmad N., Deeba F., Faisal S.M., Khan A., Agrewala J.N., Dwivedi V.[et al.]// Biochimie. —2006.  Oct.88(10). 1391–400.

71. A novel vaccine delivery system using immunopotentiating fusogenic liposomes / Hayashi A., Nakanishi T., Kunisawa J., Kondoh M., Imazu S., Tsutsumi Y.[et al]// Biochem Biophys Res Commun. 1999.  Aug. 11. —261(3). 824–8.

72. Owais M. Liposome-mediated cytosolic delivery of macromolecules and its possible use in vaccine development/ Owais M., Gupta C.M. // Eur J Biochem.  2000. —267(13). 3946–56

73. Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes/ Stamatatos L., Leventis R., Zuckermann M.J., Silvius J.R.// Biochemistry (Mosc). 1988. May. 31. —27(11). 3917–25.

74. Yan W. Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine/ Yan W., Chen W., Huang L. //  J Control Release.  2008. —130(1). 22–8.

75. Vasievich E.A. Enantiospecific adjuvant activity of cationic lipid DOTAP in cancer vaccine/ Vasievich E.A., Chen W., Huang L. // Cancer Immunol Immunother — 2011.- 60(5). 629–38.

76. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid / Mucida D., Park Y., Kim G., Turovskaya O., Scott I., Kronenberg M.[et al.]// Science. - 2007. -  317(5835)/ 256–60.

77. Retinoic acid imprints gut-homing specificity on T cells/ Iwata M., Hirakiyama A., Eshima Y., Kagechika H., Kato C., Song S.Y.// Immunity. 2004. —21. 527–38

78. Erridge C. Saturated fatty acids do not directly stimulate Toll-like receptor signaling/ Erridge C., Samani N.J. // Arterioscler Thromb Vasc Biol.  2009.  —29(11). 1944–9.

79. Pegylated liposomes have potential as vehicles for intratumoral and subcutaneous drug delivery/ Harrington K.J., Rowlinson-Busza G., Syrigos K.N., Uster P.S., Vile R.G., Stewart J.S.// Clin Cancer Res.  2000. —6(6). 2528–37.

80. Efficient presentation of multivalent antigens targeted to various cell surface molecules of dendritic cells and surface Ig of antigen-specific B cells/ Serre K., Machy P., Grivel J.C., Jolly G., Brun N., Barbet J.[et al.]// J Immunol.  1998.  —161(11). 6059–67.

81. Batista F.D. The who, how and where of antigen presentation to B cells/ Batista F.D., Harwood N.E. // Nat Rev Immunol. - 2009. —9(1). 15–27.

82. Schwendener R.A. The effects of charge and size on the interaction of unilamellar liposomes with macrophages/ Schwendener R.A., Lagocki P.A., Rahman Y.E.// Biochim Biophys Acta.   1984.  —772(1). 93–101.

83. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes/ Miller C.R., Bondurant B., McLean S.D., McGovern K.A., O’Brien D.F. // Biochemistry (Mosc). 1998.—37(37). 12875–83.

84. Lee K.D. Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density/ Lee K.D., Hong K., Papahadjopoulos D.// Biochim Biophys Acta. —1992. 1103(2). 185–97.

85.  Siegel D.P. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms/ Siegel D.P., Epand R.M. // Biophys J. 1997. —73(6). 3089–111.

86. Zhou F. Liposome-mediated cytoplasmic delivery of proteins: an effective means of accessing the MHC class I-restricted antigen presentation pathway/ Zhou F., Huang L. // Immunomethods. - 1994.—4(3). 229–35

87. Zhou F. Characterization and kinetics of MHC class I-restricted presentation of a soluble antigen delivered by liposomes/ Zhou F., Watkins S.C., Huang L. // Immunobiology. - 1994. 190(1–2). 35–52.

88. Endocytosis of an HIV-derived lipopeptide into human dendritic cells followed by class I-restricted CD8(+) T lymphocyte activation./  Andrieu M., Loing E., Desoutter J.F., Connan F., Choppin J., Gras-Masse H.[et al.]// Eur J Immunol. 2000.  —30(11). 3256–65.

89. Two human immunodeficiency virus vaccinal lipopeptides follow different cross-presentation pathways in human dendritic cells/  Andrieu M., Desoutter J.F., Loing E., Gaston J., Hanau D., Guillet J.G.[et al.]// J Virol — 2003. —77(2). 1564–70.

90. In vitro processing and presentation of a lipidated cytotoxic T-cell epitope derived from measles virus fusion protein/ Stittelaar K.J., Hoogerhout P., Ovaa W., van Binnendijk R.R., Poelen M.C., Roholl P.[et al.]// Vaccine. - 2002. —20(1–2). 249–61.

Copyright ,

Журнал клiнiчних та експериментальних медичних дослiджень © 2013. 

All Rights Reserved.